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observables, which is used to derive likelihood-based intervals and frequentist
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nuisance parameters.
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1 Introduction

The interpretation of observables in terms of parameters of the underlying theory is a
common problem in physics. Well established methods exist on how to do that, but
in practice, their application is often found to be cumbersome. GAMMACOMBO is a
framework that hopes to turn this process into a more pleasurable experience.

The basic principle is to assume a probablility density function (PDF) for the observables,
and form a likelihood function. From these, best-fit values as well as confidence intervals
or upper limits can be computed, following two staticical methods: the profile likelihood
construction and the PLUGIN method. Both methods are located at the more frequentist-
like side of the spectrum of statistical schools.

The strength of GAMMACOMBO is to provide tools helping in the following areas:
e provide a framework to construct the likelihood function
e implement minimization strategies to aid the profiling of nuisance parameters
e provide debug tools helping to identify problems during profiling
e make publication quality plots, in both one and two dimensions
e provide a way to run large scale toy experiments on a batch system
e provide debug tools helping to judge the quality of frequentist toys
e combine likelihood functions corresponding to different measurements

While being able to save the user a lot of tedious work, one of the design choices is to
not invent a black box that is just too dark. After all, applying statistical methods is, in
most cases, not trivial and requires a detailed understanding of what is going on. On the
downside, this requires the user to code in C++.

GAMMACOMBO is able to run state-of-the art sized combinations of measurements. An
example of such combinations is LHCb’s combination of measurements that are sensitive
to the CKM angle ~ [1].



2 Statistical methods

2.1 Basic Principle

The strategy to combine the input measurements described in the previous sections is
to build a combined likelihood function. This combined likelihood is the product of the
individual likelihoods. Denoting the observables by capital Latin letters, and parameters
by Greek letters, the combined likelihood L is

(@ =[1£), (1)

where the product runs over all input measurements, the vectors Ez hold the parameters
of the input measurements, the vector @ holds all parameters of the @, and the £; are
the input likelihoods. In this context, the likelihood and the probability density function
(PDF) are very similar. The PDF, say f, is a function not only of the parameters 3, but
also of the observables A: L

f=r(AlB) . (2)
The likelihood is obtained by fixing the observables to the measured values. If multiple
measurements of the same kind were performed, the likelihood is the product of as many
PDF terms. But in the context of the combination, each measurement was performed
exactly once, thus the distinction is subtle,

-

L3 = f(A1B) . (3)

A‘:Aobs

To give an example, lets consider the combination of two measurements. The first is a
cartesian measurement, which measures four cartesian observables that are related to polar
coordinates through

zy = 5% cos(65K £ ) (4)
ye =rp" sin(ip" £7). (5)

The second measurement is a direct measurement of the parameter r5%
(r5™ Jobs = 15" . (6)

Therefore the vector of parameters @ has the following components:

: (7)

where T means transpose. The purpose of the combination is to find the best values of the
components of @, defined as those that maximize the combined likelihood, and to compute
well-defined error intervals. The vector of observables, A, has the following form:

—

a=(y,rg",05")"

g = ($_7y_7l’+, Yy (TgK)ObS)T . (8>



The components of A are related to those of @ by the truth relations Eqns. [4] and @ We
can now construct the combined likelihood as

L(@) = f (Ao Al)) (9)

bs| A
where Aobs holds the measured results, and ff( v) are the truth relations. In case of
uncorrelated observables, this factors into

v =11 Fil Aione Ai(d@)) - (10)

To obtain confidence intervals, a first and simple approach is to inspect the profile likelihood
curve, which is described in Section [2.2] This has the advantage of being computationally
cheap, but in many examples comes at the price of bad frequentist coverage. A better
method is to rely on a method based on pseudo experiments, the PLUGIN method, which
is described in Section [2.3] This method is much more computing expensive. It builds
upon the profile likelihood method, so in any case it does make sense to start with the
easier PROB method.

2.2 The profile likelihood method (PrOB)

We define a y2-function as

X2(@) = —21In L(a). (11)
In general, there are many equivalent global minima, reflecting the fact that there are
multiple solutions possible. At each of these minima, the x? has a value x2. . To evaluate
the confidence level of a certain truth parameter (for example v) at a certain value ()
we consider the value of the y?-function at the new minimum, y2. (@’), where the v
component of @ is fixed to v = 9. The new minimum satisfies Ax? = x2,;.(@") — X2 > 0.
In a purely Gaussian situation for the truth parameters, the p value p = 1 — CL is given by
the probability that Ax? is exceeded for a y?-distribution with one degree of freedom:

1 (o ¢]
1-CL= —/ e V212 4t (12)
VET(1/2) Jay:
Because Eq. can be evaluated using the TMath: :Prob() function,
1 — CL = Prob(Ax?, ngor = 1) , (13)

this method is sometimes called the “PROB method”, for example described in the PDG
booklet [2]. It is equivalent to the profile likelihood method, implemented e.g. in the
MiNnos method of MINUIT. The confidence intervals are obtained from the 1 — CL curves
by finding the point where it intersects the 1 — CL =1 — 0.68 and 1 — 0.95 levels. These
points are found by interpolating between the four nearest scan points. The PROB method
is known to undercover in many situations, that is, the reported intervals contain the true
value in a lesser number of times than claimed. However it can also overcover, in which
case the reported intervals are too large.



2.3 The pseudo-experiment based frequentist method (PLUGIN)

A more accurate approach is to not rely on the linearity of the truth relations, that relate
the observables to the parameters, for example Equs. [f]and [6] Instead on assuming that the
test statistics Ay? is distributed as a 2, one should compute its distribution using pseudo
experiments. This method is based on the approach by Feldman and Cousins [3], and
extends it by introducing the concept of nuisance parameters. In the “PLUGIN” method [4]
(sometimes also “fi method”), the nuisance parameters are kept, at all times, at their
best fit values determined by the observed data, that is they are kept at their profile
likelihood point. The algorithm of the method is equivalent to the algorithm propsed by
Feldman and Cousins in the absence of nuisance parameters [5]. It is briefly described in
the following. For a certain value of interest (7o), we:

1. calculate Ax? = x2,.(@") — x2,, as before;
2. generate a “toy” result /Ttoy, using Eq. With parameters set to @' as the PDF;

3. calculate Ax? of the toy result as in the first step by replacing ffobs — fftoy, i.e.
minimize again with respect to @, once with the scan parameter floating and once
with the scan parameter fixed;

4. calculate 1 — CL as the fraction of toy results which perform worse than the measured

data, i.e.
1 —CL = N(Ax? < Ax¥)/Nioy - (14)

It has better coverage properties than the PROB method, but also not necessarily a perfect
coverage. The reason is, that at each scan step the nuisance parameters (components of
@ other than the scan parameter) are plugged in at their best fit values for this step, as
opposed to computing an n-dimensional Neyman confidence belt. In our simple example
we have already n = 3, but situations with many more parameters are very common. This
would render a fine grained scan of the parameter space computationally very expensive.

In our experience the intervals obtained using the PLUGIN method are usually within
10%-20% of those obtained using the PROB method. This means there are only few cases
where qualitative statements obtained using the PROB method become obsolete when
considering the PLUGIN results.

2.4 The CLg method

For determining upper limits on parameters often also the CLg method is used [6]. To use
this method one defines two different PDFs. One is the normal PDF which contains a
description of signal and background components, while the other is a PDF that corresponds
to the background-only distribution. This way a new value is defined to

y2(bkg) = —21In £(bkg), (15)



leading to the relation Axfy, = X7 (Pkg) — Xfs, > 0, which can be used to construct the
background p value pyi, the same way as described in the previous two subsection. The
CLg p value is then defined as

1-CL = 2. (16)
Pbke

Assuming the previously defined Ay? values follow a y2-distribution with one degree of
freedom, it is possible to simplify the procedure defining a slightly different Axﬁkg/ =

Y2 (a) — x2. (bkg), which can then again be computed as

1-CL.= Prob(Axﬁkg/, Ndof = 1) . (17)

The CLg method is often used to determine upper limit on branching fractions. It gives
the possibility to take into account the knowledge of the background, since it normalises
the p value to the probability of the data being distributed according to the background
PDEF. On the downside, this method gives up on the concept of coverage and consequently
overcovers (Ppkg < 1).



3 Installation

The installation of GAMMACOMBO requires the version management system git and the
build system cmake to be installed on your system. It also requires an installation of Root,
compiled with the RooFit library, and a C++ compiler recent enough to support C++11.
See a full list of dependencies in Tab. [l The source code is hosted on github.com. The
following steps install GAMMACOMBO on your system.

# get and build gammacombo

git clone https://github.com/gammacombo/gammacombo.git
cd gammacombo

# if you want to work with the most recent version of the code,
# switch to the development branch:

#git checkout development

mkdir build

cd build

cmake ..

make # can use -j4 to use 4 CPU cores

make install

In addition to the GAMMACOMBO core library, this also builds an example combiner
called tutorial. It is also possible to compile with debug symbols:

cmake -DCMAKE_BUILD_TYPE=Debug .. I

To run a first combination, try the following:

# run the tutorial

cd ../tutorial

bin/tutorial -u # usage

bin/tutorial -c 1 --var a_gaus -i # run combination 1

1s -1 plots/pdf/tutorial_tutoriall_a_gaus.pdf # the plot that was created

More on the tutorial is described later in Sec. 4. The GAMMACOMBO source code is
documented with doxygen. You can build the doxygen web page documentation, if you
have doxygen installed, and probably also graphviz’s dot command. The documentation
is created in the doc subdirectory of the top level directory.

# build the doxygen documentation
# still in the build directory
make doc

# open the created webpages on Mac:
cd ..; open doc/html/index.html



github.com

Table 1: Dependencies of GAMMACOMBO on libraries and software packages. It is not excluded
that it can run with older versions as well, however these are the versions GAMMACOMBO
has been tested with.

dependency minimum version details

ROOT 5.34.23 GAMMACOMBO is able to run also with previ-
ous versions, but it has been thorougly tested
with this version. ROOT needs to be com-
piled to include RooFit, for example using
the -—enable-roofit option in the configure

step
RooFit 3.60 see ROOT
boost 1.57.0
Doxygen 1.8.2 optional

3.1 Installation of subpackages

Each separate combination requires a new subpackage which exists in its own directory.
The example given in this manual is a subpackage called “tutorial”.

There are several combinations implemented by the GAMMACOMBO code which each
have their own subpackage. These are listed in Table [2] Some of these contain private
data which has not yet been published or is not intended to be public. Consequently each
subpackage is held in a private location on a hepforge server and only certain users are
allowed access to them.

If you require access to the subpackages then you will need to follow these steps:

1. Inform us you require access by emailing us (gammacombo+
owner@projects.hepforge.org) with your name and a justification.

2. Register as a hepforge user citing your reasons for joing as a GAMMACOMBO user /
developer. You can do so at this page. Please also sign up to our mailing list here so
we can keep you informed of updates, downtime, changes etc.

3. You should be able to browse subpackages on the web in the git-private area of
GAMMACOMBO on hepforge which can be found here.

To install a subpackage on your system you can do the following:

cd gammacombo # the location you installed the main package above

# set useful environment variable
HEPFORGE=<hepforge_user_name>Q@login.hepforge.org

# clone the package

git clone \$HEPFORGE:/hepforge/git/gammacombo/private/<sub_package_name>
# edit cmake/combiners.cmake file to include the sub_package_name

cd build



https://www.hepforge.org
mailto:gammacombo-owner@projects.hepforge.org
mailto:gammacombo-owner@projects.hepforge.org
https://www.hepforge.org/register
https://www.hepforge.org/lists/listinfo/gammacombo
https://gammacombo.hepforge.org/git-private

cmake ..
make # can use -j4 for 4 CPU cores
make install

To run the subpackage follow steps as per the tutorial subpackage in the rest of this
document. For example to print the usage:

# to check that it runs ok
cd ../<sub_package_name>

bin/<sub_package_name> -u # print the usage

Table 2: A list of GAMMACOMBO subpackages and their uses

Subpackage name | Details

gammacombo Combination of LHCb analyses which measure or con-
strain the CKM angle . Note that this has the same
name as the main package but only for historical reasons

biggammacombo Combination of analyses which measure or constrain B,
mixing parameters, ¢,, ['s, Al,.

hfag Combination of charm mixing averages

belle2_Vub Combination of constraints on CKM parameter V,

Vub_Vcb Combination of constraints on CKM parameters V,;, and
Vb



4 Tutorial

The tutorial consists of three parts: a simple Gaussian, a two-dimensional Gaussian, and a
circular PDF that puts a constraint on a radius parameter. Lets run the tutorial executable
(main/tutorial.cpp) to get an overview of what measurements and combinations are
defined in the tutorial. (The other exectuables in the main/ folder are not part of this
tutorial. They can be ignored.)

$ cd tutorial
$ bin/tutorial -u # -u always prints the usage and exits

AVAILABLE MEASUREMENTS

(1) 1D Gaussian (a_{obs} = -0.5)
(2) 1D Gaussian (a_{obs} = 1.5)
(3) 2D Gaussian (a_{obs}, b_{obs})
(4) circle (a_{obs}, b_{obs})

AVAILABLE COMBINATIONS

(0) empty

(1) Gaus 1

(2) Gaus 2

(3) Gaus 1 & Gaus 2

(4) 2D Gaus

(5) 2D Gaus & Gaus 1

(6) Circle

(7) 2D Gaus & Circle

(8) Gaus 1 & Gaus 2 & 2D Gaus

4.1 Simple Gaussian measurement

We start with the probably most simple case of all: a theory parameter being constrained
through a single measurement, that follows a simple Gaussian PDF. To find the best
estimate for the theory parameter ay, the following likelihood function is maximized:

1 _<a0bs - ath)2
L =G obss Gagps s = . 18
(50) = Gl ) = — s (e (19

Qobs

Here, the result of the measurement is denoted as
Aobs £ Oqy, (19)
and the numerical values used in the tutorial’s measurement 1 are
aops = —0.5+1.0. (20)

The resulting confidence intervals for ay, are computed with



bin/tutorial -c 1 -i --var a_gaus --ps 1 I

where the options mean

-c combination ID. This refers to pre-defined combinations (in this case nothing is
combined, really, it is just the simple Gaussian). A list of available IDs can be
obtained by running with the usage flag, bin/tutorial -u.

-1 interactive mode. Any plot will be shown directly in the familiar ROOT canvas. Exit
with Ctrl+c.

--var the variable name of the theory parameter to be scanned.

--ps 1 print solution on the plot. The given value configures the position of the numerical
value on the plot. See the help bin/tutorial -h for options.

The resulting plot is shown in Fig. [I]
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Figure 1: Left: 1 — CL plot resulting from tutorial measurement 1, a simple Gaussian. Right:
Curves from tutorial measurements 1 and 2, together with the result of combining both

(Sec. .

4.2 Combining two Gaussian measurmeents

In the tutorial executable, there is also a second Gaussian defined, measurement 2, which
constrains aps to a different value,

aops = 1.5 4+ 0.5 (stat) 4 0.15 (syst) . (21)

10



The combination of Eq. [20| and [21] should reproduce the usual weighted average,

wW1a1 + WA

th w1 —+ Wa ( )
- (23)
th = w1 + Wa
1
w; = O‘_gi s (24)

where the a; refer to Eq. 20] and 21], and the statistical and sytematic uncertainty of Eq.
was combined in quadrature. The numerical result of Eq. [22]is

g = 1.07 £ 0.46.. (25)

Lets put them both into the same plot, and then also plot the combination of both. The
resulting plot is shown in Fig.

# multiple instances of -c will be added to the same plot
bin/tutorial -c 1 -c 2 -i --var a_gaus

# combination number 3 combines both Gaussians
bin/tutorial -¢ 1 -¢ 2 -¢ 3 -i --var a_gaus —-ps 1

Options used:

-c 1 -¢ 2 -c 3 When the combination argument is given multiple times, all combinations
will be computed and added to the same plot. The order controls the order in the
plot, where the last one is in the foreground.

4.3 Two-dimensional Gaussian measurement

The next measurement of the tutorial, measurement 3, contains a two-dimensional Gaussian
PDF in the previous variable, a, and another one, b. Now the likelihood function is given
by

L(athu bth) - G(aobsa Oaops s Athy bobs, Obops s bth)

1 1 Tl
= exp | —=(Zobs — Tin) V™ (Zops — T , 26
vl CCTREE N G CREL ) P
where & = (@opbs, bobs) 18 the vector of observables, n is the number of observables, and
V' is the covariance matrix. Combination number 4 contains only this two-dimensional
measurement, the numerical values of the observations are

ope = 0.1 % 1.0, (27)
bops = 1.5+ 1.0, (28)
p(a,b) =0.6. (29)

The resulting plots are shown in Fig.

11



# the 2D scan is triggered by giving a second --var argument

bin/tutorial -c 4 --var a_gaus --var b_gaus -i

# redo the scan to print 2D confidence contours and a

# marker at the best fit value

bin/tutorial -c 4 --var a_gaus --var b_gaus -i --npoints 70 --2dcl --ps 1

# just remake the plot (without redoing the scan), and

# activate magnetic plot boundaries

bin/tutorial -c 4 --var a_gaus --var b_gaus -i --2dcl --ps 1 --magnetic -a
plot

The command line options mean:

--var a_gaus --var b_gaus specify the two variables to perform the scan for. The
variable given first will be plotted on the horizontal axis, the second one on the
vertical axis.

--2dcl plot contours corresponding to “two-dimensional” confidence level. The default
is to plot contours such that their projection to the axes coincides with the one-
dimensional scans. In this case the resulting innermost contour corresponds to 39%
CL. When the option is given, the innermost contour is enlarged to hold 68% CL.

--npoints 70 use 70 scan points in each direction, so 70? = 4900 in total.

--ps 1 print a marker at all local minima. If —-ps 2 is given, only the best fit value is
indicated.

--magnetic switches on magnetic plot boundaries, that will drag the contours towards
them. In many cases, this results in nicer contours, but not always.

-a plot activates the plot action: Whenever a scan is done, the result is saved into a file
in plots/scanner. This can be read in to remake the plot, without having to rerun
the entire scan. With more complex combinations, this saves time.

While a two-dimensional scan is running in interactive mode (-i), a window opens
illustrating the scan progress. The scan is done in a trajectory spiralling away from the
start points. In this plot, the current Ay? is plotted. Any subsequent scan opens one
more of these plots. If in a subsequent scan lower Ay? values are encountered, this will
show up. At the end of the scan, one more window is opened showing the final Ax?, from
which the confidence contours are computed. Updating these control plots can consume a
significant computing time for simple combinations, like the tutorial. In these cases, the
program runs much faster non-interactively (without -i).

For more complex combinations, two-dimensional scans can take a long time, especially
with a high granularity. For these cases, the —a plot option is very useful, which allows
the plot to be redone without having to rerun the scan. This way, the look and feel can be
changed: plot markers at best fit points, change titles, change colors, change the number
of contours, activate magnetic boundaries, etc. When running with the -a plot option,

12



the only other important options are -c 6 --var a_gaus --var b_gaus, all other ones
are not needed to identify the correct file and can be omitted.

4 ‘ ‘ ‘ \ ‘ \

bGaus
bGaus

2D Gaus ammaCombo.|

. [
T ‘ T ‘ T ‘ T ‘ T ‘ T

_2 -\ L -\ L | L | L \2 _2 -\ L -\ L | L | L \2
aGaus aGaus
Figure 2: Result of tutorial 4, a two-dimensional Gaussian ellipse (Sec. [4.3)). Left: with “1D”

confidence regions. Right: with “2D” confidence regions and a marker at the best fit
value.

4.4 A more advanced example: circular constraint

The next measurement of the tutorial is a circular constraint for the parameters a and b.
This happens if we have a measurement of a radius-like parameter. In measurement 4 of
the tutorial, a measurement of r is implemented,

r=20+0.25, (30)

which is related to the parameters a and b through the truth relation
r=+va?+b2. (31)

The constraint is shown in Fig. [3| (left). Note that when computing it (code below), it
is likely that several best fit points are found. This is because all points on the circle
have the same likelihood, and due to the numerical accuracy some get picked up. In
the default configuration, a rescan is done for each local maximum of the likelihood is
found—this might take a while in this case. Let’s combine the circular constraint with the
two-dimensional Gaussian measurement from the previous example. At first, both could
be added to the same plot Fig. 3| (right). Then, we could combine the circular constraint
with the two-dimensional Gaussian measurement and plot all three combinations together.
This is shown in Fig. {4

# scan the circular constraint of the tutorial
bin/tutorial -c 6 --var a_gaus --var b_gaus -i
# add the previous 2D Gaussian to the same plot

13



bin/tutorial -c 6 --var a_gaus --var b_gaus -a plot -i -c 4
# combine the circular constraint with the two-dimensional Gaussian
bin/tutorial -c 7 --var a_gaus --var b_gaus

# plot all three into the same plot

bin/tutorial -c 6 --var a_gaus --var b_gaus -a plot -i -¢c 4 -¢ 7

4 ‘ ‘ ‘ \ ‘ \

4 T i T i i T i T
3 ([ cirde
| [ ] 2D Gaus

bGaus

3L cirde GammaCombo|

2
SGaus

2

aGaus

Figure 3: Result of the tutorial 6, a circular constraint (Sec. [4.4). Left: the circular constraint
alone. Right: added the two-dimensional Gaussian from the previous example.

bGaus
@)
3
@

1

2
AGaus

Figure 4: Result of the tutorial 6, a circular constraint (Sec. . Combining the circular
constraint with the two-dimensional Gaussian measurement.

4.5 Changing combinations on the fly

It is possible to change existing combinations on the fly from the command line by
adding and/or removing measurements. The measurements are refered to by their internal

14



numbers, which can be obtained from the usage printout (-u).

Example 1: add a measurement Lets add a measurement on the fly to one of the
tutorial combinations. The resulting plot is shown in Fig. [5

# Lets start by running the unmodified combination 1,

# just consisting of measurement 1:

$ bin/tutorial -i --var a_gaus -c 1

# Now print out the usage message to find a measurement we can add:
$ bin/tutorial -u

AVAILABLE MEASUREMENTS

(1) 1D Gaussian (a_{obs} = -0.5)
(2) 1D Gaussian (a_{obs} = 1.5)
(3) 2D Gaussian (a_{obs}, b_{obs})
(4) circle (a_{obs}, b_{obs})

# Lets add number 2 to the combination:

$ bin/tutorial -i --var a_gaus -c 1:+2

# For comparison, lets add the unmodified combination to the same plot:
$ bin/tutorial -i --var a_gaus -c 1:+2 -c 1

Example 2: delete a measurement Lets delete a measurement on the fly from one of
the tutorial combinations. The resulting plot is shown in Fig. 5]

# This is the unmodified tutorial combination 8,
# consisting of three measurements:
$ bin/tutorial -i --var a_gaus -c 8

Combiner Configuration: Gaus 1 & Gaus 2 & 2D Gaus

1. [measurement 1] 1D Gaussian (A)
2. [measurement 2] 1D Gaussian (B)
3. [measurement 3] 2D Gaussian (A,B)

# Lets delete measurement 1 from the combination.
$ bin/tutorial -i --var a_gaus -c 8:-1 -c 8

Example 3: a new combiner from scratch An easy trick to make completely new
combinations from the command line is to define an empty combination in the main file.
In the tutorial, this combination has index 0. Then one can add whatever one wants.

# Adding several measurements to the empty combination
# to reproduce combination 8:

$ bin/tutorial -i --var a_gaus -c 0:+1,+2,+3
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Figure 5: Result of Examples 1 and 2. Left: Add a measurement to an existing combination
from the command line. Right: Delete a measurement from an existing combination.

4.6 Running the PLUGIN method

Running the pseudo-experiment based PLUGIN method for a particular combination
consists of two steps:

1. generate and fit the pseudo experiments, possibly on a batch farm;
2. read in the fit results and compute the CL intervals.

Running the PLUGIN method requires that a profile-likelihood scan is already set up,
because each batch job will recompute the profile likelihood. In practice this means one
should have successfully made the PROB plot before, whithout running into problems. For
the tutorial this is the case! Lets take as an example combination number 7 (“2D Gaus &
Circle”) and scan for parameter a. The PLUGIN result is shown in Fig. [6]

# Run three jobs to generate and fit toy experiments, possibly on
# different cores or batch nodes:

bin/tutorial -c 7 --var a_gaus -a pluginbatch --ntoys 100 --nrun 1
bin/tutorial -c 7 --var a_gaus -a pluginbatch --ntoys 200 --nrun 2
bin/tutorial -c 7 --var a_gaus -a pluginbatch --ntoys 400 --nrun 3

# Compute the plugin intervals from all toys:
bin/tutorial -c 7 --var a_gaus -a plugin -j 1-3 -i

# Only plot the plugin curve:

bin/tutorial -c 7 --var a_gaus -a plugin -j 1-3 -i --po

The arguments mean:

-a pluginbatch batch mode. This will run a number of PLUGIN toys and save them into
an output file. Many of these jobs can be run in parallel for example on a batch
farm.
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--ntoys 100 produce 100 PLUGIN toys per scan point.

--nrun 1 run job number 1. This number will be added to the filenames of the produced
PLUGIN toy files. Files will be overwritten if the same number is given.

-j 1-3 read in PLUGIN toy files number 1 through 3.
--po make a PLUGIN-only plot.

The results in Fig. [6] show that, first of all, the PLUGIN method agrees quite nicely
with the profile likelihood method. Probably it will yield slightly larger intervals, but
in order to be conclusive, one would have to run more toys. Also, the result is visibly
non-Gaussian, as it develops an asymmetric tail on the left. This was already apparent
from the two-dimensional Fig. [4 In this case, however, the non-Gaussianity likely doesn’t
affect the statistical coverage, as both methods return quite similar results.

— L ! 7 — L ]
(_I) 1.2 — 2D Gaus & Circle ] LI) 12 s s e E
— [+ 2DGas& Circle 1 - E ]
1 \ I —] 1f —_—
0.8 4 GammaCombo- 0.8F GammaCombo]
r ¥ i ] F ]
0.6 } E;;‘ ii { 06 } {
r 4 h; ] F ]
041 68.3% 4 1 . 04  683% .
i K ‘ii 7: i 7:
0.2 L ;iiiiii ] i 0.2 C :
[ e b ] r 95.5% 1
Qb ' : ] : I L 0 i ; I ; 0 i I : I
-2 -1 0 1 2 -2 -1 0 1 2
aGaus aGaus

Figure 6: Result of running the PLUGIN method with combination number 7: a 2D Gaussian
with a circular constraint. Left: the points are the result from the toys, while the filled
curve corresponds to the PROB method. In this case, there is good agreement between
both. Right: Plotting the result of the PLUGIN as a filled curve, without the PROB
curve.

4.7 The standard Feldman-Cousins example

The presence of a physically forbidden region for a parameter complicates the statistical
treatment. In particular, the profile likelihood construction is easily spoiled, when the
boundary is close to the region of interest. In this situation, the method by Feldman
and Cousins [3] provides an accepted frequentist alternative. In the absence of nuisance
parameters, the PLUGIN method is equivalent to the method by Feldman and Cousins.
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Lets take the example of the simple Gaussian measurement given in Sec. The parameter
a has a physical limit configured (see src/ParametersTutorial.cpp),

a>—1.5, (32)

which has not been enforced so far. It can be activated through the physical range option
--pr. The resulting plot is shown in Fig. [7| (left). Note that we are trying to scan in the
non-physical region, which is currently not well supported: The drop at a = —1.5 is not
vertical due to the finite binning, and as a result, the interpolated confidence interval is
not accurate. This can be overcome by restricting the scan range to the physical region

(Fig. [7] right).

# activate physical parameter limits
$ bin/tutorial -c¢ 1 -i --var a_gaus --ps 1 --pr

# restrict scan range to the physically allowed region
$ bin/tutorial -c¢c 1 -i --var a_gaus --ps 1 --pr --scanrange -1.5:2.5

The arguments mean:

—--pr physical range. This will enforce the physical parameter ranges defined in
src/ParametersTutorial. cpp.

--scanrange -1.5:2.5 Adjust the scan range to the given range. The default range is
defined in src/ParametersTutorial.cpp.

— Gaus1 — Gaus1

1-CL
[N
N

)
S
3
@
o
3
oy
Q

0.8
0.6

0.4

0.2

aGaus aGaus

Figure 7: Applying a physical range to combination 1. Left: We tried to scan in the now
unphysical region, which caues some inaccurracies (see text). Right: We restricted the
scan range to the physical region, resulting in accurately deterimined (but statistically
questionable) intervals.

Lets now run the PLUGIN toys for this example. The result is shown in Fig. [§] The
difference to the profile likelihood method is most apparent close to the physical boundary:
the boundary seems to “push away” the lower boundary of the confidence interval. The
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observed interval boundaries reproduce the nominal ones taken from the original Feldman-
Cousins paper [3]. The values to compare to are given in Tab. X of Ref. at o = 1.0
because our Gaussian is shifted with respect to theirs by 1.5 units.

# run plugin toys for combination 1 (simple Gaussian), with physical boundary

# (try to run mulitple jobs to generate more toys)

$ bin/tutorial -c 1 --var a_gaus -a pluginbatch --ntoys 400 --pr --scanrange
-1.5:2.5 --nrun 1

# compute the plugin intervals from all toys:

$ bin/tutorial -c 1 --var a_gaus -a plugin -j 1 --pr --scanrange -1.5:2.5 -i

a_gaus = [ -1.24, 0.51] ( -0.50 - 0.74 + 1.01) @0.68CL, Plugin
a_gaus

[ -1.5, 1.4] ( -0.5 - 1.0 + 1.9) @0.95CL, Plugin

1-CL
[EEY
N
T
|
:
I

+ Gausl

GammaCombo-

Figure 8: Applying a physical range to combination 1 and running the PLUGIN method. In
this case the PLUGIN method is equivalent to the method by Feldman-Cousins. The
difference to the profile likelihood method is most apparent close to the physical
boundary at a = —1.5.

4.8 Running the PLUGIN method in 2D

It is also possible to run the PLUGIN method in two dimensions. The commands follow the
previos lines, however a few additional complications arise. Mostly, the 2D scan becomes
computationally demanding quickly, due to the vast number of points needed for smooth
2D contours. Lets take as an example combination 7 (2D Gaus & Circle), which is the
pink contour in Fig. [} We will restrict the 2D grid to a size of 30 x 30 bins. The result is
shown in Fig. [9]

A first attempt just plots the PLUGIN contours along with the PROB contours, without
specifying the contours should be true “2D confidence contours”, and should therefore
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cover the true value in, e.g., 68% of the cases in two dimensions. Since one would need
additional assumptions on how to translate the p-value, which is computed directly by the
PLUGIN method, into an “1D equivalent”, this is not done in GAMMACOMBO. Therefore
the contours don’t match until one give the --2dcl option.

Both the PLUGIN and PROB contours seem to match quite well in this example, too.
This is not trivial, but perhaps not too surprising given that they already matched in the
one-dimensional case of Fig. 3

To make the best out of scarce toy statistics in the 2D case, a smoothing option was
implemented for 2D contours. However, it needs to be used with care: in this example
(Fig. @, it seems to artificially widen the contour over what appears to be reasonable.

The 2D PLUGIN method also produces a p-value histogram, that allows onen to directly
judge the status of toy statistics. This is also shown in Fig. [9]

# run 2D plugin toys for combination 7 (2D Gaus & Circle)

bin/tutorial -c 7 --var a_gaus --var b_gaus -a pluginbatch --ntoys 100
--npoints 30 --npointstoy 30 --nrun 1

bin/tutorial -c 7 --var a_gaus --var b_gaus -a pluginbatch --ntoys 100
--npoints 30 --npointstoy 30 --nrun 2

bin/tutorial -c 7 --var a_gaus --var b_gaus -a pluginbatch --ntoys 100
--npoints 30 --npointstoy 30 --nrun 3

# compute the plugin contours from all toys. This will produce

# non-matching contours!

bin/tutorial -c 7 --var a_gaus --var b_gaus -a plugin -j 1-3 -i --group off
--legsize 0.38:0.10 --leg 0.17:0.80

# with the --2dcl option, the contours match
bin/tutorial -c 7 --var a_gaus --var b_gaus -a plugin -j 1-3 -i --group off
--legsize 0.38:0.10 --leg 0.17:0.80 --2dcl

# lets try to use the smoothing option for the contours

# (in this case it doesn’t seem to do any good)

bin/tutorial -c 7 --var a_gaus --var b_gaus -a plugin -j 1-3 -i --group off
--legsize 0.38:0.10 --leg 0.17:0.80 --2dcl --smooth2d

The arguments mean:

--npoints 30 use 30 x 30 bins for the 2D PROB scan which is done prior to the PLUGIN
toys.

--npointstoy 30 use 30 x 30 bins also for the 3D PLUGIN grid. In principle they don’t
have to use the same granularity. You will receive warnings if, as a consequence of
unequal bin sizes, the PLUGIN scan point and the PROB point where the values of
the nuisance parameters is taken from, differs too much.

—-—group off turns off the group label—else, in this case, the large GAMMACOMBO string
would cover the legend
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--legsize 0.38:0.10 legend size, we use it to reduce the size of the legend
--leg 0.17:0.80 legend position, we move the legend up a little to not cover
--2dcl use two-dimensional confidence contours for the PROB method

--smooth2d apply a smoothing algorithm to the 2D contours—to be used with care, see

text
g 4 L ‘ g 4 L A ‘
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Figure 9: Result of running the PLUGIN method in two dimensions on combination 7. Top left:
confidence contours for the PROB and PLUGIN methods, when not using the —-2dcl
option, causing inconsistent CL contents in the plot (see text). Top right: Using the
--2dc1 option. Bottom left: Using the 2D smoothing option ——smooth2d. Bottom right:
The raw p-value histogram obtained from the PLUGIN method, with a toy statistics of
300 toys per grid point.
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5 Create a new combiner module

In this section we describe how to add a new combiner module to GAMMACOMBO, that
will contain everything that is needed for a new combination project: all measurement
classes (containing the observed central values, uncertainties, correlations, as well as the
PDF), parameter definitions, and a set of predefined combinations.

We will take a real-life example based on a measurement of the CKM angle v, as reported
in Ref. [7]. The observables are cartesian coordinates x4 and y., which are linked to
the parameter of interest, v, and two nuisance parameters 655 and r5% through the
relations

ry =1 cos(65K £ 4) (33)
ye =rp" sin(0p" £7). (34)

The observables are measured to be

v_o=( 254+25+1.1)x107?%, (35)
y.=( 75429415 x107?%, (36)
ry = (=774+244+11)x107%, (37)
Yy =(—-224+25+1.1)x107%, (38)

where the first uncertainty is statistical, and the second is systematic. The statistical and
systematic correlations are given in Tables [3 and [4]

Table 3: Statistical cartesian correlations.

Ty Ty yr
z— 1 —=0.247 0.038 —0.003
Y_ 1 —0.011  0.012
o, 1 0.002
Y+ 1

Table 4: Systematic cartesian correlations.

r— Y- T4 Y+
r— 1 0.005 —-0.025 0.070
Y 1 0.009 —0.141
T4 1 0.008
Y+ 1

In addition to this real-life cartesian example we will add a mock-up measurement of the

nuisance parameter 755 which we can then combine with the cartesian example:

rB% =0.1040.01. (39)
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1. The following steps describe how to create the source files needed for a new combiner.
The complete solution is contained in the directory tutorial/cartesian, so the
quick way to get it run is to just copy this directory one level up to where the other
combiner directories live.

cp -r tutorial/cartesian . I

For a more step-by-step like experience, we will copy the existing tutorial directory
and modify the source files to make the new cartesian combiner from scratch.

cp -r tutorial cartesian

rm -r cartesian/cartesian # delete the solution!

2. Tell the GAMMACOMBO build system about the new combiner:

vi cmake/combiners.cmake
# edit the file to look like
SET( COMBINER_MODULES
tutorial
cartesian
)
vi cartesian/CMakeLists.txt
# change the name of the project to look like this
SET (COMBINER_NAME
cartesian

)

3. Define the project parameters. These will be v, rB% and §8%. All the parameters
are defined in one single class. Here their names are defined, their titles, unit, the
default start value for the fit, the default scan range, and the physically allowed
region.

# rename the parameter class header file to match the new project
cd cartesian/include

mv ParametersTutorial.h ParametersCartesian.h

vi ParametersCartesian.h # edit to change Tutorial for Cartesian
# also rename the implementation file

cd cartesian/src

mv ParametersTutorial.cpp ParametersCartesian.cpp

vi ParametersCartesian.cpp

Add the parameters to the ParametersCartesian. cpp file:

void ParametersCartesian::defineParameters()
{

Parameter *p = 0;

p = newParameter("g");
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p—>title = "#gamma";

p->startvalue = DegToRad(70);

p—>unit = "Rad";

p—>scan = range(DegToRad(0), DegToRad(180));
p—>phys = range(-7, 7);

p = newParameter("d_dk");

p->title = "#delta_{B}"{DK}";

p->startvalue = DegToRad(127);

p—>unit = "Rad";

p—>scan = range(DegToRad(0), DegToRad(180)) ;
p—>phys = range(-7, 7);

p = newParameter("r_dk");
p->title = "r_{B}"{DK}";
p->startvalue = 0.09;

p—>unit = "";
p—>scan = range(0.02, 0.2);
p—>phys = range(0, led);

The name is being used on the command line, while the title of a parameter will
be used in the plots. The unit of a parameter can be an arbitrary string, however,
setting it to Rad will tell GAMMACOMBO that this parameter is an angular parameter.
During minimization, angular parameters will be kept within the range [0, 27]. The
start value is being used in the first minimization of the x? function. Some care needs
to be taken here, because it is very easy to pick starting values so far away from the
sensible region that the y? function reaches too large values that prevent the fit from
converging. The default scan range applies to both one- and two-dimensional scans,
if not being overwritten from the command line using the options --scanrange
(horizontal axis) and --scanrangey (vertical axis). The physically allowed range
can be used to impose hard limits on the value of a parameter, which get activated
through the --pr option.

. Create the measurement class holding the measurement of the cartesian observables,
as well as the definition of their Gaussian PDF. At first, create the the header file in
include/PDF Cartesian.h.

#ifndef PDF_Cartesian_h
#define PDF_Cartesian_h

#include "PDF_Abs.h"
#include "ParametersCartesian.h"

using namespace RooFit;
using namespace std;
using namespace Utils;

class PDF_Cartesian : public PDF_Abs
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public:
PDF_Cartesian(TString c0bs, TString cErr, TString cCor);
“PDF_Cartesian() ;
void buildPdf ) ;
void initObservables();
virtual void initParameters();
virtual void initRelations();

void setCorrelations(TString c);
void setObservables(TString c);
void setUncertainties(TString c);
s
#endif

5. Constructor implementation.

PDF_Cartesian: :PDF_Cartesian(TString cObs, TString cErr, TString cCor)
: PDF_Abs(4) // <-- configure the number of observables
{
name = "cartesian"; // <-- configure the PDF name, should be unique
initParameters();
initRelations();
initObservables();
setObservables (cObs);
setUncertainties(cErr);
setCorrelations(cCor);
buildCov();
buildPdf () ;
}

PDF_Cartesian::~PDF_Cartesian(){}

6. Implement the parameter initialization and the truth relations. The truth relations

are implemented through RooForlumaVar objects. It is also possible to implement
them through customized objects, that inherit from RooAbsReal. This way, relations
of arbitrary complexity can be added. This will be discussed in Sec. |5.1} The names
of the predicted observables need to end on _th.

void PDF_Cartesian::initParameters()

{
ParametersCartesian p; // <-- use the project’s parameter class
parameters = new RooArgList("parameters");
parameters->add(*(p.get ("r_dk")));
parameters->add (*(p.get ("d_dk")));
parameters->add (*(p.get("g")));

}

void PDF_Cartesian::initRelations()

{
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theory = new RooArgList("theory");

RooArgSet *p = (RooArgSet*)parameters;

// The order of this list must match that of the COR matrix!

theory->add (*(new RooFormulaVar ("xm_dk_th", "xm_dk_th", "r_dk*cos(d_dk-g)",
*p)));

theory->add (* (new RooFormulaVar("ym_dk_th", "ym_dk_th", "r_dk*sin(d_dk-g)",
*p)));

theory->add (*(new RooFormulaVar("xp_dk_th", "xp_dk_th", "r_dk*cos(d_dk+g)",
*p)));

theory->add (*(new RooFormulaVar("yp_dk_th", "yp_dk_th", "r_dk*sin(d_dk+g)",
*p)));

7. Implement the definition of the observables. The names of the observables need to
match those of the predicted ones, with the only difference that they end on _obs.
Their titles will show up in pull plots. The configured value is not important, but
the ranges should be far away from any boundary there might be, as they will affect
the toy generation within the PLUGIN method.

void PDF_Cartesian::initObservables()

{
observables = new RooArgList("observables");
// The order of this list must match that of the COR matrix!
observables—>add (*(new RooRealVar("xm_dk_obs", "x-", 0, -1, 1)));
observables->add (*(new RooRealVar("ym_dk_obs", "y-", 0, -1, 1)));
observables->add (*(new RooRealVar("xp_dk_obs", "x+", 0, -1, 1)));
observables->add (*(new RooRealVar("yp_dk_obs", "y+", 0, -1, 1)));

8. Implement the measured values of the observables. Based on a config string, dif-
ferent values can be loaded. This is very useful if different versions of a given
measurement exist, for example a first measurement from the year 2010, and an
update from 2012. These config strings are being used inside the main program file,
main/cartesian.cpp (see below). The string stored in obsValSource is meant for
information only, it will be printed in the verbose output (-v). The “truth” and
“toy” entries should not be touched.

void PDF_Cartesian::setObservables(TString c)
{
if ( c.EqualTo("truth") ){
setObservablesTruth() ;
}
else if ( c.EqualTo("toy") ){
setObservablesToy() ;
}
else if ( c.EqualTo("year2014") ){
obsValSource = "arxiv:1408.2748";
setObservable("xm_dk_obs", 2.5e-2);
setObservable("ym_dk_obs", 7.5e-2);
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setObservable ("xp_dk_obs",-7.7e-2);
setObservable("yp_dk_obs",-2.2e-2);
}
else {
cout << "PDF_Cartesian::setObservables() : ERROR : config not found: "
<< ¢ << endl;
exit(1);

9. Implement the measured uncertainties of the observables. It is important to match
the order that of the observables. The systematic error can be set to zero without
problems, but the statistical error should always be finite. The obsErrSource string
is again solely for informational purposes.

void PDF_Cartesian::setUncertainties(TString c)

{
if ( c.EqualTo("year2014") ){

obsErrSource = "arxiv:1408.2748";
StatErr[0] = 0.025; // xm
StatErr[1] = 0.029; // ym
StatErr[2] = 0.024; // xp
StatErr[3] = 0.025; // yp
SystErr[0] = 0.011; // xm
SystErr[1] = 0.015; // ym
SystErr[2] = 0.011; // xp
SystErr[3] = 0.011; // yp

+

else {

cout << "PDF_Cartesian::setUncertainties() : ERROR : config not found: "
<< ¢ << endl;
exit(1);

10. Implement the measured correlations of the observables. Here the order needs
to match that of the observables. The function resetCorrelations() sets all
correlations to zero.

void PDF_Cartesian::setCorrelations(TString c)
{

resetCorrelations();

if ( c.EqualTo("year2014") ){

corSource = "arxiv:1408.2748";

double dataStat[] = {
// xm ym xp ypP
1. , -0.247, 0.038, -0.003, // xm
-0.247, 1. , -0.011, 0.012, // ym
0.038, -0.011, 1. , 0.002, // xp
-0.003, 0.012, 0.002, 1. // yp
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Ig
corStatMatrix = TMatrixDSym(nObs,dataStat) ;
double dataSyst[] = {

// xm ym Xp ypP
i. , 0.005, -0.025, 0.070, // xm
0.005, 1. , 0.009, -0.141, // ym
-0.025, 0.009, 1. , 0.008, // xp
0.070, -0.141, 0.008, 1. // yp
};
corSystMatrix = TMatrixDSym(nObs,dataSyst) ;
X
else {
cout << "PDF_Cartesian::setCorrelations() : ERROR : config not found: "
<< ¢ << endl;
exit(1);
X

11. Implement the Gaussian PDF. It is possible to use any other functional form for
the PDF, as will be described in Sec. but the Gaussian is probably the most
common choice. Don’t change the name of this PDF object.

void PDF_Cartesian::buildPdf ()
{
pdf = new RooMultiVarGaussian("pdf_"+name, "pdf_"+name,
* (RooArgSet*)observables, *(RooArgSet*)theory, covMatrix);

12. Tmplement the second PDF class for the measurement of r5%. We will just adapt
the existing class for a simple-Gaussian measurement from the tutorial, PDF_Gaus.

e copy the header file include/PDF _Gaus.h into include/PDF rb.h

e cdit the new header file to adjust the class name (PDF_rb), and to in-
clude the header file of the parameter class of the cartesian project
(ParametersCartesian.h).

e copy the implementation file src/PDF_Gaus.cpp into src/PDF_rb. cpp
e cdit the class name, change to the parameter class of the cartesian project
e include the paramter r_dk rather than a_gaus

e change the name of the r5% observable to e.g. r_dk_obs; similar for the theory
value

e set the observed central values for the identifier string ”year2013” to 0.1 and
the statistical error to 0.01
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13.

14.

15.

16.

If you created the folder for the cartesian project as suggested by copying the tutorial
folder, you should remove now the non-needed classes PDF_Circle.h, PDF Gaus.h,
PDF _Gaus2d.h, to not confuse the build system. Also remove the corresponding
implementation files from the src directory.

Now we need to create the new main file. Rename the one from the tutorial to
main/cartesian.cpp and change it to look like this:

#include <stdlib.h>

#include "GammaComboEngine.h"
#include "PDF_rb.h"

#include "PDF_Cartesian.h"

using namespace std;
using namespace RooFit;
using namespace Utils;

int main(int argc, charx argv[])

{

GammaComboEngine gc("cartesian", argc, argv);

// define PDFs

gc.addPdf (1, new PDF_Cartesian("year2014","year2014","year2014"),
"Cartesian");

gc.addPdf (2, new PDF_rb("year2013","year2013","year2013"), "rb");

// Define combinations
gc.newCombiner (0, "empty", "empty");

gc.newCombiner(1l, "cartesianl", "Cartesian", 1);
gc.newCombiner (2, "cartesian2", "rb", 2);
gc.newCombiner (3, "cartesian3", "Cartesian & rb", 1,2);
// Run

gc.run();

Change to the build directory and build the new project

cd build
make install -j4

Run the new combiner. The results are shown in Fig. [10]

cd cartesian

bin/cartesian -u

bin/cartesian -¢ 1 -¢ 3 --var g -i
bin/cartesian -¢ 1 -¢ 2 -¢ 3 --var r_dk -i
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6 Limits with Datasets

Originally, Gammacombo was designed to combine a handful of data points into a measure-
ment. But its functionality has since been extended to set limits on physical parameters by
modelling big sets of data with probability density functions. For example, GAMMACOMBO
can be used to obtain a confidence interval on the branching ratio of a particle decay by
analysing the distribution of detector events in the mass variable.

Despite the fact that this is theoretically the same problem as the combination of mea-
surements, it comes with its own challenges. Therefore, GAMMACOMBO offers a separate
interface for these kind of problems. It is described in this chapter.

6.1 Terminology

A useful piece of terminology associated with limit setting on datasets is the distinction of
global observables. As opposed to the "normal” observabeles such as the mass or the lifetime
of particles, which are measured many times, which are identically and independently
distributed and which are stored in datasets, the global observables are those that are
measured only once. Typical exampels are external inputs such as the world average of the
branching ratio of a control channel. In a way, one can think of a a normal GAMMACOMBO
combination as a dataset combination that contains only global observables.

The function that models the probability distribution for a global observables is called its
constraint PDF. GAMMACOMBO assumes that the complete probability density function
describing your experiment factorizes into the PDF(s) describing the independent and
identically distributed events in the dataset(s) and a coupole of constraint PDF's.

6.2 Usage

Other than for the simple combinations, the command line is not very useful when
calculating limits on datasets. Instead, the combination is almost fully specified in the main
cpp file of the combiner subpackage. Also, it was decided that instead of defining the PDF's
as Gammacombo classes, they should instead be loaded from a |https://root.cern.ch/roofit|
RooWorkspace. The dataset(s), the global observables, the probability density function -
all these must be present in the workspace. In fact, Gammacombo even expects that the
fit model has been fitted to the data once. (This tight dependence on a RooWorkspace
has been a controversial decision among the developers and might be removed in a future
iteration.)

The components that are required to be present in the workspace are:

e A RooAbsPdf that models the dataset - without the constraints on global observables
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A RooAbsPdf that is the background model to describe the dataset - without the
constraints on global observables

A RooDataSet that contains the data

The RooFitResult of the initial fit to data. This MUST be named data_fit_result
in the workspace.

A RooArgSet containing PDFs for the constraints.

A RooArgSet that lists the global observables.

A RooArgSet that lists the non-global observables whose measurements are stored
in the dataset (for example the mass).

e A RooArgSet that lists all parameters.

Each object in the RooFit workspace has a name, be it the RooAbsPdf or a RooArgSet.
These names also identify the objects in the workspace and need to be passed to GAMMA-
CoMBO. This way they can be found by the framework. The function calls which pass
these names to the gammacombo engine can be derived from the example in the following
section.

6.3 Example

The example for setting limits with datasets is part of the tutorial combiner and is included
in the default installation. As mentioned before, we require a workspace which holds
the data, the different observables and parameters, grouped into sets, as well as the
probability density function and the result of an initial fit to the dataset. This workspace is
construced by the function tutorial dataset_build workspace.cpp which can be found
in the tutorial/main folder. This function also generates the dataset that is taking the
place of the dataset to be analyzed. Obviously, this is only for the sake of example. Have
a look into the file to see what it does. Then execute it by calling

bin/tutorial_dataset_build_workspace

A workspace should be created and saved into the bin directory.

The main file for the dataset tutorial is called tutorial dataset.cpp and is located in
the tutorial/main folder as well. It is faily simple and will look very similar for other
analyses:

#include "GammaComboEngine.h"
#include "TFile.h"
#include "RooGaussian.h"
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#include "RooExponential.h"
#include "RooWorkspace.h"

int main(int argc, char* argvl[])

{

// Load the workspace from its file
TFile f("workspace.root");
RooWorkspace* workspace = (RooWorkspacex)f.Get("dataset_workspace");
if (workspace==NULL){
std::cout<<"No workspace found:'"<<std::endl;

3

// Construct the PDF and pass the workspace to it

PDF_Datasets* pdf = new PDF_Datasets(workspace) ;

pdf->initData("data"); // name of the dataset in the workspace

pdf->initBkgPDF ("extended_bkg_model"); // name of the background pdf in the
workspace

pdf->initPDF ("mass_model"); // name of the pdf in the workspace

pdf->initObservables("datasetObservables"); // non-global observables whose
measurements are stored in the dataset (for example the mass).

pdf->initGlobalObservables("global_observables_set"); // global observables

pdf->initParameters("parameters"); // all parameters

pdf->initConstraints("constraint_set"); // RooArgSet containing the
"constraint" PDF’s

// the below are optional (will not effect the results but just make some
plots for you)

pdf->addFitObs("mass"); // will make some sanity plots

pdf->unblind("mass"," [4360:5260] , [5460:6360]"); // be a bit careful about
staying blind

// Start the Gammacombo Engine
GammaComboEngine gc("tutorial_dataset", argc, argv);

// set run on dataset option
gc.setRunOnDataSet (true) ;

// set the PDF
gc.setPdf (pdf);

// Combiners are not supported when working with datsets.

// The statistical model is fully defined with the PDF

// In some other use cases you will see lines like

// gc.newCombiner(1l, "Combiner Name", "Combiner Title", 2,3,4 );
// these have no meaning in the datasets case

// now run it
gc.run();
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The most notable difference to the "normal” gammacombo is that no combiner objects
are used. This means that there is (currently) no way to add or remove measurements
when datasets are involved. Also make sure to pass true to the run() method when
calling. This tells GammaCombo that we are analyzing a dataset and that it shouldn’t
expect a combiner. Another important difference: You do not need to define a PDF in
GAMMACOMBO. The PDF Datasets_Abs object is simply a wrapper around the RooFit
probability density function that is contained in the workspace. It provides an interface to
GAMMACOMBO and handles the generation of simulated events.

To run the example, call

bin/tutorial_dataset --var branchingRatio --npoints 10 --scanrange
le-7:2e-6

This performs a simple prob scan on the example data. The p value is determined at 10
points in the given scan range. The name of the scanned parameter is branchingRatio.
This name is originally defined when building the workspace. A plot of the p value curve
will be saved to plots/bin.

After completing the prob scan, you can also run a plugin scan:

bin/tutorial_dataset -a pluginbatch --var branchingRatio --ntoys 50
--npoints 10 --scanrange le-7:2e-6

This will produce the necessary toy distributions of the test statistic, but it won’t calculate
any p values yet. Make sure that scan range and the number of points does exactly match
the argument values used in the prob scan. Finally, to calculate and plot the p values
from the plugin scan:

bin/tutorial_dataset -a plugin --var branchingRatio

Again, a plot of the p value curve will be saved to plots/bin.

6.4 Using the CLg method

Adding a computation of limits with the CLg method is done by adding the option --cls
1(2). This will calculate a confidence interval using the CLg method. The upper boundary
of it will be the upper limit. Additionally it will draw a confidence contour for the CLg
method on top of the other baseline method (PROB or PLUGIN) as is shown in Fig. [11] on
the left for the command

bin/tutorial_dataset --var branchingRatio --npoints 10 --scanrange
le-7:1e-6 --cls 1
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For the PROB method there is no difference between the two options for the CLg method.
The p values are computed using the simplified version of the method .

However, in the plugin case, there is a difference. While --cls 1 uses the simplified
version ([17)), the option --cls 2 (“Mixed CL”) exploits the standard CLg p values from
. The --cls 2 option is the most reliable method, but requires a lot of toys to be
precise. A comparison of the implemented methods is shown in Fig. on the right.

For convenience, the --cls 2 option comes with an additional plot, which puts
the measured CLg contours into reference of the background-only hypothesis. An example
for this is shown in Fig. [II} This plot has to be handled with care, though, since the
smoothing that is applied is not always correct if the number of points and toys is small.
It can be checked with adding the --debug command. The plot shown in Fig. has
been produced with 100 scan points and 1000 toys per scan point.

(‘I)' 1.2f [Jrocs = ? Lof =g .
— r Prob b - C +MiuxﬁCLs .
1 . T T T ] 1 ——— L B
0.8 GammaCombo 0.8 GammaCombo
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0.4 5ot . 0.4 .
0.2 = 0.2 .

0 Lo X100 - . 1x107
0.2 0.4 06 0.8 1 . . 06 08 1
B(B%- X) B(B%- X)

Figure 11: Confidence contours for the PROB method and the PROB CLg method (--cls 1) for
the datasets case on the left. The right plot shows a comparison of all implemented
methods with 100 scan points and 1000 toys per scan point.
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Figure 12: Confidence contour for the Mixed CLg option (--cls 2) in comparison to the expected
contours for the background-only hypothesis.
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6.5 Custom implementations of PDF _Datasets_Abs

You may find that the default fitting and event generation algorithms in the

PDF Datasets_Abs class are not sufficient for your purpose.

In these cases, you can substitute your own implementation of these methods. This is
most easily obtained by writing a new class that inherits from PDF Datasets_Abs and
implements the corresponding virtual methods. Here is how the header file of such a class

could look like:

#ifndef PDF_DatasetTutorial_h
#define PDF_DatasetTutorial_h

#include "PDF_Datasets_Abs.h"

class PDF_DatasetTutorial : public PDF_Datasets_Abs

{

public:
PDF_DatasetTutorial (RooWorkspace* w) ;
“PDF_DatasetTutorial();
virtual RooFitResult* fit(bool fitToys = kTRUE) override;

virtual void generateToys(int SeedShift = 0) override;
virtual void generateToysGlobalObservables(int SeedShift = 0)
override;
};
#endif

This would allow to re-implement the methods fit and generateToys and
generateToysGlobalObservables. Do not forget to call the constructor of the parent

class:

#include "PDF_DatasetTutorial.h"

PDF_DatasetTutorial: :PDF_DatasetTutorial (RooWorkspace* w):
PDF_Datasets_Abs (w){}
PDF_DatasetTutorial:: “PDF_DatasetTutorial();

RooFitResult* PDF_DatasetTutorial::fit(bool fitToys){
. your implementation here ...

};

void PDF_DatasetTutorial::generateToys(int SeedShift) {
. your implementation here ...

}

void PDF_DatasetTutorial::generateToysGlobalObservables(int SeedShift) {
. your implementation here ...

3
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As an example, the class PDF DatasetTutorial can be found in the tutorial/includes
and tutorial/src folders. It re-implements the method for generating the toy dataset
and the call to the RooFit fitter. In order to use it for the tutorial, you can must include
the "PDF DatasetTutorial.h" header at the top of the tutorial datasets.cpp file and
replace the line where the PDF object is instantiated from

PDF_Datasets* pdf = new PDF_Datasets(workspace) ; I

to

PDF_Datasets* pdf = new PDF_DatasetTutorial(workspace) ; I

After compilation, you are now using the custom implementation.

38



7 Advanced Topics

Most of this section is yet to be filled.

7.1 Numerical results

The printout of GAMMACOMBO contains the parameter values of each local minimum of
the y? function that was found during the scan. These solutions are ordered by their x?
value, so the global minimum is displayed first. An example from tutorial combination 7

(see Sec. is:

SOLUTION O:

combination: tutorial?

title: 2D Gaus & Circle

date: Sun Feb 22 23:01:27 2015

FCN: 0.20063, EDM: 1.58985e-07

COV quality: 3, status: O, confirmed: yes

Parameter FinalValue +/- Error (HESSE)
a_gaus 0.411559 +/- 0.758865
1 b_gaus 1.93224 +/- 0.265757

The several components have the following meaning:
SOLUTION 0 is the running index of the displayed solution
combination the name given to the combination in the main file
title the title given to the combination in the main file

FCN the value of the x? function

EDM estimated distance to minimum, as provided by MINUIT
COV quality result of RooFitResult: :covQual()

status result of RooFitResult: :status()

confirmed solutions are first found as maxima of the p-value curve, which is obtained while
the scan parameter is fixed to the scanned point. Before printout, the x? function
gets reminimized with the scan parameter floating, too. Only if the reminimization
agrees reasonably with the result from the scan, the solution is regarded as confirmed.

Error (HESSE) the parabolic error obtained by HESSE

All solutions get stored to disk into parameter files into the plots/par directory. They
have the following format:
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cat plots/par/tutorial_tutorial7_a_gaus.dat

##### auto-generated by ParameterCache #######
##### printed on Sun Feb 22 23:01:27 2015 ######
# ParameterName value errLow errHigh

————— SOLUTION O -----

### FCN: 0.20063, EDM: 1.58985e-07

### COV quality: 3, status: O, confirmed: yes

a_gaus 0.411559 -0.758865 0.758865
b_gaus 1.932237 -0.265757 0.265757

Here, errLow and errHigh are obtained from the parabolic HESSE errors, so will always
be the same.

It is possible to print out the correlation matrices of each solution. This is triggered by
the command line option —-printcor.

7.2 Defining a custom scan strategy and starting points

In more complex combinations, it can happen that the y? function has multiple local
minima, that are well separated from each other. As the scan progresses, different values
of nuisance parameters can shrink the x? hill separating the minima, and it may happen,
that the fit scanner jumps into the second mininum and stays there. This will usually be
visible as a jump in the p-value curve. One can be, however, unlucky and completely miss
a second mininum.

A good way to alleviate this problem is to redo the scan using another starting point,
and to accept points with a lower x? value (a higher p-value) into the final curve, if any
are found. In GAMMACOMBO, the default scans are done in “drag mode”, where the
fit at each scan step uses as start parameters the fit result from the previous scan step.
Therefore it matters what the start parameters of the first scan were. The default is to
use the parameter values defined in the parameter class (ParametersTutorial.cpp in the
tutorial).

It is possible to override this default to explicitly start at a certain point. For this, the
parameter files (see Sec. are used: In order to make a start parameter file, one simply
copies one parameter file, adding _start to the name. For example:

cp plots/par/tutorial_tutorial7_a_gaus.dat
plots/par/tutorial_tutorial7_a_gaus_start.dat

Start parameter files can contain any number of parameter points (labelled “SOLUTION”
inside the file). For each point found, one rescan will be performed.
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Parameter files can also be used from other combinations. If it contains values for
parameters that are not in the current combination, they will simply be ignored.

Instead of creating a start parameter file, one can also just provide a .dat file through the
command line option --parfile.

A good strategy to obtain flawless p-value curves is to rescan once per local minimum
of the y? function. This requires that one knows already more or less where the minima
are—more about strategies how to find them in Sec.[8] For this reason the default scan
strategy in GAMMACOMBO is to first run an initial scan, and then to rescan for each local
minimum encountered.

7.3 Plotting an overview of a combination’s structure

GAMMACOMBO produces a graphical representation of the content of a combination in
the .dot format, that can be interpreted by the dot command of the graphviz package.

7.4 Control Plots

e Giving the option —-pulls will produce a pull plot showing which observables deviate
the most from the prediction. It will also show the value of the y? function at the
best fit value, and the corresponding (naive) fit probability.

e Giving the option -e will produce a plot of the parameter evolution of a PROB scan.

e Many control plots exist to judge the quality of the PLUGIN toys.

7.5 Run an Asimov toy

7.6 Predict observables

e Observable names are unique in the Combiner so multiple PDFs with observables of
the same name can be combined. For this purpose each observable has a unique 1D
appended, for example “_UID2” for ID 2. The number corresponds to the number
that the PDF which provides this observable has in the Combiner.

e One can make predictions for observables by simply scanning for them. When
doing this, the corresponding x? constraint usually needs to be tightened. This
effectively replaces the inversion of the truth equation by the minimization. A plot
is being produced showing the deviation of the actual value of the observable and
the predicted one, as a function of the scan step. This should be a flat line at zero,
and allows to judge if the constrained was tightened enough.
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7.7 Attempt a coverage correction
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8 Use cases, hints, and advice

to be filled

9 Command line options

Here is a list of available command line options. The full list can always be obtained by
running

bin/tutorial -h

--2dcl plot contours corresponding to “two-dimensional” confidence level. The default
is to plot contours such that their projection to the axes coincides with the one-
dimensional scans. In this case the resulting innermost contour corresponds to 39%
CL. When the option is given, the innermost contour is enlarged to hold 68% CL.
Sect. 4.3l

--asimov run an Asimov toy. Sect.

--color changes the plot color of the plotted combination. There are six different colors
for one-dimensional plots defined in GammaComboEngine: :defineColors(), that can
be specified through numbers 0-5. For two-dimensional plots, there are four different
colors defined in OneMinusC1Plot2d: :OneMinusC1lPlot2d (), that can be specified
through the numbers 0-3.

--controlplots Make control plot for the PLUGIN toys. Sect. [9]
--covCorrectPoint Define the point for the coverage correction (experimental). Sect.
--covCorrect Activate a coverage correction (experimental). Sect. .

--digits, -s Set the number of printed digits right of the decimal point. Default is
automatic.

--evol, -e Plot the profile likelihood parameter evolution of a PROB scan. Sect. [7.4]
--fix ’g=1.7,r_dk=-0.09’ Fix given scan parameters to the given values.
--group LHCb Change the GAMMACOMBO logo to LHCDb.

--id 57 When making controlplots (--controlplots), only plot toys generated at a
specific scan point, e.g. 57. The id number refers to the scan step and therefor to a
specific value of the parameter of interest.

--importance Activate importance sampling for PLUGIN toys. This reduces the number
of toys generated in a region with large expected p value, therefore saving computing
cycles, that can better be invested to get a better p value accuracy in the tails.
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--intprob Use the internal (PROB) x? histogram instead of the y? from the toy files to
evaluate 1 — CL of the PLUGIN method. Sect. [7.4]

--largest Report largest CL interval: from the lowest boundary of all intervals to the
highest boundary of all intervals. Useful if two intervals are very close together.

--leg Give print options for the legend such as its position, or to turn it off.

--lightfiles Produce only light weight PLUGIN toy files. They cannot be used for
control plots but save disk space.

--log make logarithmic one-dimensional 1-CL plots

--magnetic switches on magnetic plot boundaries, that will drag the contours towards
them. In many cases, this results in nicer contours, but not always. Sect. [4.3]

--ncontours Plot this many sigma contours in 2D plots (max 5).
--ndivy Set the number of axis divisions (y axis in 1D and 2D plots).
--ndiv Set the number of axis divisions (x axis in 1D and 2D plots).
--nosyst Ignore systematic uncertainties.

--npoints2dx Configure the number of scan points on x-axis in 2D scans.
--npoints2dy Configure the number of scan points on y-axis in 2D scans.
--npointstoy Number of scan points used by the plugin method.

--npoints Configure the number of scan points used in 1D and 2D scans (for 2D, use
same number of points for each axis).

--nrun 1 run job number 1. This number will be added to the filenames of the produced
PLUGIN toy files. Files will be overwritten if the same number is given.

--ntoys 100 produce 100 PLUGIN toys per scan point.

--parfile Give a specific parameter file to provide, for example, start parameters.

Sect. [7.2
--plotid Make the control plot with given ID to save time (--controlplots). Sect.

--pluginplotrange Restrict the PLUGIN plot to a given range to rejcet low-statistics
outliers.

--po make a PLUGIN-only plot.
—--prelim Plot “Preliminiary” into the plots. See also ——unoff.
—--printcor Print correlation matrix of each solution found.

--probforce Use a stronger minimum finding algorithm for the PROB method. Sect. [7]
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--pr physical range. This will enforce the physical parameter ranges defined in
src/ParametersTutorial.cpp. Sect. [d4.7]

--ps 1 print a marker at all local minima. If —-ps 2 is given, only the best fit value is
indicated.

--ps 1 print solution on the plot. The given value configures the position of the numerical
value on the plot. See the help bin/tutorial -h for options.

--pulls Make a pull plot illustrating the consistency of the best solution with the
observables. Sect. [T.4l

--gh A list of quick hacks that can be enabled through the command line, that modify
very specific areas of the code. These areas can be found by searching for calls to
the isQuickhack() function.

--scanforce, -f Use a stronger minimum finding method for the PLUGIN method.

--scanrange -1.5:2.5 Adjust the scan range to the given range. The default range is
defined in src/ParametersTutorial.cpp. Sect.

--scanrangey -1.5:2.5 For 2D plots: Adjust the scan range of the vertical axis to
the given range. The default range is defined in src/ParametersTutorial.cpp.

Sect. 4.7
--sn2d 2D version of --sn.
--sn Save nuisances to a parameter cache file at certain scan point. Sect. .
--title Override the title of a combination.
-—unoff Plot “Unofficial” into the plots. See also -—prelim.

--var a_gaus --var b_gauss specify the two variables to perform the scan for. The
variable given first will be plotted on the horizontal axis, the second one on the
vertical axis.

--var the variable name of the theory parameter to be scanned.

-a plot activates the plot action: Whenever a scan is done, the result is saved into a file
in plots/scanner. This can be read in to remake the plot, without having to rerun
the entire scan. With more complex combinations, this saves time.

-a pluginbatch activates the PLUGIN batch mode. This will run a number of PLUGIN
toys and save them into an output file. Many of these jobs can be run in parallel for
example on a batch farm.

-a plugin activates the PLUGIN mode. This will read in a number of PLUGIN toy files
that where previously produced. These files need to be specified using the -j option.

-¢ 1:+2 modifying combination number 1 by adding PDF number 2. Sect. [4.5]
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-c 5 combination number 5. This refers to pre-defined combinations. A list of available
IDs can be obtained by running with the usage flag, bin/tutorial -u. When the
combination argument is given multiple times, all combinations will be computed
and added to the same plot. The order controls the order in the plot, where the last
one is in the foreground. Sect.

-d Activate debug level output.

-i interactive mode. Any plot will be shown directly in the familiar ROOT canvas. Exit
with Ctrl+c.

-j 1-3 read in PLUGIN toy files number 1 through 3.
-u Prints usage information and exits.

-v Activate verbose output.
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